Il nucleare contro la crisi climatica? Prospettive e possibili strategie – intervista di Icona Clima

Condividiamo l’intervista a cura di Silvia Turci al nostro socio Marco Ripani, dirigente di ricerca dell’Istituto Nazionale di Fisica Nucleare, per Icona Clima. Buona lettura! Negli ultimi mesi la conversazione sul nucleare sta tornando più accesa che mai, ma l’opinione pubblica resta divisa: per alcuni l’energia derivante da centrali nucleari potrebbe essere una alternativa fattibile per compiere la transizione energetica, per altri il nucleare resta una soluzione troppo rischiosa, costosa e tutt’altro che sostenibile. Per approfondire il funzionamento delle centrali, le nuove tecnologie in via di sperimentazione, le alternative attuali e le prospettive del settore energetico, abbiamo fatto qualche domanda al Dirigente di ricerca dell’INFN (Istituto Nazionale di Fisica Nucleare), il Dott. Marco Ripani. La Commissione Europea ha recentemente proposto di far entrare il nucleare nella tassonomia energetica dell’UE perché potrebbe “facilitare la transizione verso un futuro basato principalmente sull’energia rinnovabile”. Secondo lei l’energia nucleare dovrebbe essere considerata una buona opzione per la transizione energetica? Sì, senz’altro. Tutto dipende sempre dagli obiettivi che ci si pone, e da quanto in realtà si riesca a mettere in atto misure tali da raggiungere quegli obiettivi. Si fanno spesso proiezioni sul futuro che però hanno ampi margini di incertezza perché poi bisogna vedere in pratica cosa uno riesce a fare. Sicuramente ci sono una serie di organizzazioni che ritengono che si possa raggiungere rapidamente entro una certa data la neutralità climatica utilizzando ad esempio le energie rinnovabili. Questa strategia, secondo alcune valutazioni, richiede uno sforzo gigantesco: si tratta di aumentare la produzione di energia rinnovabili di fattori importanti. Questo ci porta a ragionare sul fatto che si tratta di proiezioni e obiettivi. Ma saranno realistici? Io ritengo che gli obiettivi che ci siamo dati sono estremamente ambiziosi e anche nella comunità tecnico scientifica ci sono forti dubbi che si riesca a raggiungere la neutralità climatica entro date così stringenti, utilizzando soltanto le rinnovabili. E’ assodato che l’energia nucleare è un’energia quasi a emissioni zero, confrontabile con quella derivante da vento e sole. Dipende dai tempi, e bisogna avere chiaro di cosa si sta parlando: se parliamo di installare nuovi impianti bisogna tenere presente che le tempistiche per costruire un impianto di generazione attuale richiedono alcuni anni. In Europa e negli Stati Uniti purtroppo stiamo assistendo a tempi estremamente lunghi: oltre dieci anni. E questo dipende da una serie di fattori: si tratta di impianti nuovi, mai costruiti prima: nel costruirli si sono presentati problemi non preventivati e che vanno affrontati. Il nucleare inoltre è soggetto, più di molte altre fonti, a ispezioni e regolamentazioni molto stringenti. Si fa per la sicurezza, ovviamente, ed è per questo che i tempi si dilatano. Tassonomia UE: la transizione verde apre al nucleare? Quale potrebbe essere la strategia migliore? Sarebbe più rapido prolungare la vita degli impianti già esistenti. Da una parte sarebbe necessario salvaguardare gli impianti già esistenti, prolungandone la vita. Gli impianti nucleari ricevono una autorizzazione, la cosiddetta licenza, che dura un tot di anni, e viene rinnovata. Nella maggior parte dei casi si parla di una quarantina d’anni, ma recentemente, in diversi Paesi e in particolare negli Stati Uniti, si è deciso di considerare il prolungamento della vita fino a 60-80 anni. Questo viene fatto dopo ispezioni, sostituzioni di parti usurate eccetera, ma è un processo più rapido di quello necessario per sostituire un nuovo impianto. Questo è già stato fatto, in molti casi, e quindi permette di utilizzare impianti già esistenti, aggiornandone lo stato e i sistemi di sicurezza, e prolungandone la vita. Quello che a mio parere non bisogna fare è spegnere in anticipo gli impianti. Bisognerebbe invece tenere e aggiornare quelli esistenti e programmare la costruzione di nuovi impianti. Gli impianti di nuova costruzione oggi si trovano tutti in Paesi considerati in via di sviluppo: ce ne sono molti in Cina, qualcuno in Russia, e gli Emirati Arabi hanno costruito il loro primo impianto. In Cina i tempi di costruzione sono particolarmente rapidi, nell’ordini di 5-6 anni. Nell’occidente la costruzione di impianti nuovi richiede circa 10 anni. Per questo bisogna decidere oggi. Ci sono gli impianti di nuova generazione, di varie tipologie, che richiedono tempi forse ancora più lunghi. I reattori piccoli, modulari, sono ancora in corso di procedure autorizzative: per loro magari i tempi di costruzione potrebbero essere più veloci, ma prima bisogna arrivare a dei modelli approvati. Gli impianti di quarta generazione sono, invece, impianti grossi su cui c’è molta attività di ricerca e sviluppo. Ce ne sono un paio in funzione in Russia, ma per una approvazione servirà qualche anno. I tempi di ricerca e sviluppo si potrebbero accelerare: recentemente Europa e Stati Uniti hanno investito sempre meno nella ricerca sul nucleare. E purtroppo il nucleare non è un tipo di industria dove si più fare “stop-and-go”. Con uno stop al nucleare i giovani non vanno più a studiare ingegneria nucleare, le competenze svaniscono, la gente va in pensione. Non si può ripartire con uno schiocco delle dita. E’ tutta una questione di programmazione che è estremamente importante. Quali sono le alternative oggi per quanto riguarda gli impianti nucleari e la gestione delle scorie radioattive?  Semplificando, i reattori nucleari attuali a fissione funzionano praticamente quasi tutti con raffreddamento ad acqua e moderazione. Dalla reazione di fissione si liberano dei neutroni, che a loro volta causano altre fissioni in una reazione a catena che, tenuta sotto controllo, tiene il reattore acceso. I neutroni sono molto efficaci nel produrre la fissione se vengono rallentati. I neutroni che escono dal processo di fissione quando il nucleo viene disintegrato, sono molto veloci. Rallentandoli, facendoli attraversare mezzi leggeri come acqua o grafite, sono molto efficaci nel produrre altre reazioni di fissione. Questo processo ha però degli svantaggi: i neutroni, rallentati, producono un certo tipo di rifiuti nucleari radioattivi, e molti di questi hanno una vita molto lunga. La maggior parte delle scorie che derivano dalla reazione, i cosiddetti frammenti di fissione (cesio, stronzio), hanno vite abbastanza brevi, ossia dell’ordine di qualche decina d’anni. La loro radioattività quindi sparisce in circa un centinaio d’anni. I depositi costruiti per ospitare questo tipo di rifiuto, infatti, di solito è pensato per durare…

Assemblaggio finale del primo settore europeo del Vacuum Vessel di ITER

È in corso presso lo stabilimento di Mangiarotti/Westinghouse di Monfalcone (GO) l’assemblaggio dei quattro segmenti costituenti il primo settore europeo del Vacuum Vessel di ITER. Il Vacuum Vessel è la camera toroidale entro la quale sarà confinato il plasma della reazione di fusione. Esso funge dunque come prima barriera per la radioattività e al tempo stesso fornisce al plasma l’ambiente ad ultra alto vuoto necessario per la reazione. In un tokamak, maggiori sono le dimensioni del Vacuum Vessel, più facile è il confinamento del plasma: il Vacuum Vessel di ITER, con un volume interno di 1400 mc, conterrà un volume di plasma 10 volte maggiore del più grande tokamak ad oggi esistente.  Il Vacuum Vessel è costituito da più settori ed ogni settore è composto da quattro segmenti poloidali (Poloidal Segment, PS). Il settore completo peserà circa 390 tonnellate. Il progetto di assemblaggio dei quattro segmenti è condotto dal consorzio AMW (Ansaldo Nucleare, Mangiarotti/Westinghouse, Walter Tosto) ed è in questi mesi alle battute conclusive, con la lavorazione meccanica finale dei singoli segmenti ed il loro assemblaggio sull’imponente jig di supporto progettata allo scopo.  I  PS 1 e 4 sono realizzati da Mangiarotti/Westinghouse mentre i PS 2 e 3 dalla Walter Tosto. Durante la fase di assiematura, i segmenti sono sottoposti ad approfonditi controlli dimensionali volti a garantire le strettissime tolleranze finali richieste. La spedizione del primo settore completo verso Cadarache (Francia), sito di costruzione della futura centrale a fusione, è in programma verso la fine del 2021. Il contributo dell’industria italiana al progetto ITER è di primo ordine: su un budget stimato in 21 miliardi di euro, 1.6 miliardi sono stati aggiudicati a imprese italiane, ovvero il 60% dei contratti per componenti ad alto valore tecnologico.

L’Europa e il Sacro Graal della fusione nucleare

Ripubblichiamo questo contributo del presidente di Associazione Italiana Nucleare, Umberto Minopoli, originariamente apparso sulla rubrica Green&Blue di Repubblica del 14 luglio 2021. E’ davvero lontana la fusione nucleare? La “prova elettrica”, l’allaccio alla rete del primo impianto è prevista tra il 2040 e il 2050. Non è affatto futuribile. Anzi: è una data chiave. In quel decennio, ricordiamolo, si vorrebbe traguardare la decarbonizzazione dell’economia. Sarebbe tutt’altra prospettiva poter contare, a quelle date, sulla dimostrabilità elettrica di una nuova fonte di energia: pulita, priva di scorie, sicura, a buon mercato e, pressoché illimitata. Quasi un graal. Nel 2025, l’impianto  ITER (International Thermonuclear Experimental Reactor), nella Provenza francese, inizierà il suo esperimento. Dovrà verificare, nella sostanza, che spendendo 50 MW di energia si abbia un guadagno (stabile) di 500 MW. Quindi che una centrale elettrica che usi questo guadagno è fattibile. Ma Iter non è più il solo esperimento di fusione in costruzione. La canadese General Fusion e l’inglese UKAEA hanno annunciato la costruzione, entro il 2035, di un impianto in Gran Bretagna, non solo sperimentale come Iter, ma già dimostrativo, cioè allacciato alla rete. Questo accelera i tempi. Anche perché, a differenza di Iter, nell’impianto inglese entra il capitale privato: la tecnologia del “sole nella bottiglia” diventa sfida di mercato. Ci si investe. E non si trascurino le ricadute tecnologiche della fusione che sono già realtà: vedi l’intesa tra l’italiana ASG (fornitrice dei magneti del reattore di Iter) e l’università giapponese di Chubu per lo sfruttamento della superconduttività nelle reti elettriche di trasmissione. Grazie a Iter e all’annuncio inglese, l’Europa diventa, alla scadenza del decennio della decarbonizzazione (2020/2030) il luogo di elezione della tecnologia energetica, la fusione nucleare, della seconda parte del secolo. Non impressioni il tempo. L’effettivo funzionamento di un reattore di fusione può essere provato solo in un impianto a scala di centrale. Per questo la fase sperimentale di Iter non può essere saltata. È alle dimensioni di scala che vanno verificate le scommesse ingegneristiche del reattore di fusione: stabilità del plasma (produzione di potenza termica aggiuntiva per almeno 60 minuti; effettivo guadagno di energia (fattore Q) nella reazione; tenuta dei materiali alle importanti potenze termiche del reattore. L’Italia avrà una funzione strategica. A Frascati si localizzerà il DTT (Divertor Tokamak Test) una versione gemella dell’impianto ITER (600 milioni di investimenti e 1500 occupati). Servirà a verificare il componente chiave del reattore tokamak (acronimo russo che sta per camera toroidale magnetica): il divertore, la parte del reattore su cui verranno deviati e scaricati i maggiori carichi termici del plasma, il gas di nuclei leggeri (isotopi di idrogeno) che alimenterà la fusione e la produzione di energia. Il DDT di Frascati verificherà i materiali migliori per  sopportare le forti potenze termiche della reazione di fusione. Agli impianti sperimentali di Cadarache e di Frascati, si affiancherà, nel decennio prossimo, la costruzione dei primi due dimostratori: il DEMO del consorzio europeo Eurofusion e quello annunciato dalla cordata anglo canadese. A questi impianti spetterà tradurre le prove fisiche della fusione in prova elettrica: conversione della potenza termica in elettricità. L’Europa, dunque, centro privilegiato della fattibilità della fusione nucleare. È il premio per una scelta tecnologica, fatta decenni fa, che si è rivelata vincente. Il fondamento fisico della fusione nucleare è unico: replicare in reattori artificiali la reazione energetica che alimenta le stelle (sun in a bottle). In essa, due o più nuclei leggeri di idrogeno, in moto in un gas rarefatto (plasma) – alimentato da campi elettrici e contenuto da campi magnetici – vengono forzati (attraverso temperature altissime del plasma) ad unirsi, formando un nuovo elemento chimico (elio) e rilasciando (reazione esotermica) una grande quantità di energia, convertibile in elettricità. Il mondo ha perseguito strade diverse, nei laboratori, per replicare, in forma sicura e controllata, la reazione solare. Oggi siamo, finalmente, agli esiti di tale ricerca: il concepimento di macchine dimostrative, a scala di centrale, che in condizioni di assoluta sicurezza e stabilità, possono generare energia utile. La tecnologia della fusione, ristretta all’inizio ad un gruppo di Paesi (America, Russia, Italia, Gran Bretagna, Germania) è oggi, come la tecnologia spaziale, perseguita da un club assai vasto di Paesi industrializzati. Oltre 35. Le macchine di fusione perseguite sono, fondamentalmente, raggruppate in due tecnologie: quella del tokamak in Europa (estrazione di energia da un plasma caldissimo in rotazione), quella del confinamento inerziale (raggi di luce laser riscaldano sferette di nuclei di idrogeno fondendole) negli USA. La scelta tecnologica europea si va rivelando più vicina alla praticabilità energetica.

Toshiba completa la prima bobina a campo toroidale per ITER

Toshiba ha annunciato di aver completato la costruzione della prima delle 18 bobine a campo toroidale destinate a ITER, il progetto internazionale di impianto sperimentale a fusione con sede a Cadarache, in Francia. Nove bobine saranno fabbricate in Europa e altre nove in Giappone. Si tratta dei giganteschi magneti superconduttori (16.5 metri di altezza, 9 di larghezza e 300 tonnellate di peso) che costituiranno la gabbia per il confinamento del plasma. L’obiettivo di ITER è dimostrare la fattibilità tecnologica della fusione, producendo 500 MW di potenza per almeno 400 secondi continuativi con un input di 50 MW. L’esperimento dovrebbe essere avviato nel 2035, mentre servirà ancora più tempo per l’avvento di vere e proprie centrali a fusione per la produzione di elettricità, qualora l’esperimento confermasse le attese.

Webinar ENS sul progetto fusione ITER

Non perdetevi il prossimo Webinar della European Nuclear Society! The ITER project: International collaboration to build the Sun on Earth 3 Giugno 2021 // 14.00 – 16.00 CET, Online Per registrarsi: https://lnkd.in/ebrFisN ITER (“La via” in Latino) è uno dei progetti più ambiziosi al mondo nel campo energetico. Il suo scopo è provare la praticabilità della fusione per la produzione di energia a basse emissioni su larga scala, sulla base dello stesso principio che alimenta il Sole e le stelle. Una simile iniziativa necessita di uno sforzo comune, dunque ITER riunisce in un consorzio 35 Paesi al fine di produrre il più grande tokamak del mondo, costiutito da dieci milioni di parti. Inoltre, nucleare a fissione e fusione lavorano insieme e non in competizione, visto il bagaglio di esperienza che l’industria nucleare porta alla ricerca sulla fusione. Relatori: Bernard Bigot, Direttore Generale di ITER Organization Anatoli Krasilnikov, capo dell’Agenzia Russa per ITER Roberto Adinolfi, Presidente di Ansaldo Nucleare